

Client: (name of the company)

Software Development
Project Management

Date: 25/02/2022 Group: 2

Alvaro Morata Hontanaya

Brian Jesse Gatukui Kimani
Ainara Machargo

Maria Opland

Justin Pimentel
Elvis Vasquez

Tommy Woldseth

 Grupo 1

2

Content

1. General data of the company offering the project 7

2. Definitions and acronyms 7

3. Initial offer and budget 8
3.1 Offer 8

3.1.1 Background 8
3.1.2 Analysis of the context 8
3.1.3 Main objective 8
3.1.4 Scope of the project 8
3.1.5 Action plan 8
3.1.6 Teamwork 9

3.2 Budget 10
3.2.1 Salaries 10
3.2.2 Table of the budget 11

4. Software Configuration Management Plan 11
4.1 Purpose of the Plan 11
4.2 Scope 12
4.3 Definitions and Acronyms 12
4.4 References 12
4.5 Organization 12
4.6 Responsibilities 13
4.7 Applicable policies, directives and procedures 13
4.8 Configuration Identification 13

4.8.1 The preliminary product hierarchy is established 13
4.8.2 Selection of the configuration elements 14
4.8.3 Selection of the identification scheme 14
4.8.4 Definition of relationships 15
4.8.5 Definition and establishment of baselines 15
4.8.6 Definition and establishment of software libraries 16

4.9 Changes control 16
4.10Status account

 18
4.11Configuration auditing

 28

5. Quality Plan 28

6. Estimation 41

7. Planning 42

8. Planning and requirements specification 42
8.1 Feasibility study 42

8.1.1 Requirements definition 42
FUNCTIONAL REQUIREMENTS 43
NON-FUNCTIONAL REQUIREMENTS 49

8.1.2 Study of alternative solutions 52
8.1.3 Valuation of alternatives 52
8.1.4 Solution selection 53

8.2 Use case model and traceability matrix 54
8.3 Use cases high level description 56

3

8.4 Use cases prioritization 60

9. Construction 63
9.1 First Iteration 63

9.1.1 First iteration analysis 63
Expanded format use cases description 63
Operation contracts 67

9.1.2 First iteration Design 72
Sequence diagrams 72
Class Diagram 74
Transition State Diagram 74

9.2 Second Iteration 75
9.2.1 Second iteration analysis 75

Expanded format use cases description 75
Operation contracts 79

9.2.2 Second iteration Design 85
Sequence diagrams (Lucid Chart Link) 85
Class Diagram 86
Transition State Diagram 86

 87

10. Execution of the quality plan 87

11. Execution of the configuration management plan 90

Tables index

No se encuentran elementos de tabla de ilustraciones.

Figures index

No se encuentran elementos de tabla de ilustraciones.

4

5

CREATIVE IDEA DESCRIPTION

Burn-out in the workplace is a growing issue in occupations all over the world. It is

defined as a syndrome resulting from workplace stress that has not been

managed, according to WHO (Burn-Out an "Occupational Phenomenon":

International Classification of Diseases, 2019). One of the reasons people

experience burn-out is that workers do not feel rewarded for their efforts

(Aumayr-Pintar et al., n.d. p.17). In addition to that, another reason for burn-

outs is working too much without a sufficient amount of breaks. To combat this

problem we have come up with an idea in the form of an app intended for

employees, called BonusBreak. The main feature of BonusBreak is to reward

employees for taking breaks and encourage teams to have a healthy work

environment.

BonusBreak seeks to create a unique experience that enables each individual user

to track their mental wellness in the workplace, while still creating incentive on

the team level to encourage a healthy work environment. Our main target

market is teams mostly in software engineering, that rely on repeating cycles,

for example two-week development sprints, to accomplish work tasks for a

project in broken down stages. On an individual level, users of the app will

answer a brief survey during sign up that describes their current workstyle,

means of de-stressing, interests outside of work and any current causes of stress,

anxiety and unrest in the workplace. With this data, we plan to tailor specific

routines for each user that the app will recommend they apply to their day-to-

day work habits. The routines will include scheduled break reminders with

suggested activities to partake in during these breaks. The activities will focus on

a user’s preferred interests and ways of de-stressing. Through our platform, a

user will be able to visualize and keep track of how implementing various

recommended tasks affects their work style, productivity and improves overall

wellness. Throughout workdays, users get pinged with spontaneous notifications

from the app to describe their current feelings which will contribute to this data.

At the individual level, employees will receive points based on how they work, e.g.

if they have an effective working session in between breaks. Furthermore, the

employees will earn points by taking breaks, up to a certain limit. Since taking

breaks is an important part of reducing burn-out, the combination of effective

working sessions and taking breaks will be essential. In addition to regular

breaks, employees will be introduced to three daily challenges at the beginning

of the work day that will result in points upon completion. These challenges will

6

e.g. be socializing, give a coworker a compliment, say hello to five people at the

workplace etc. Participating in the app will be optional to avoid putting pressure

on the employees. To further motivate the workers to be consistent, users will

receive bonus points for obtaining a streak of using the app in consecutive days.

At the team level, BonusBreak incentivizes these recommended routines by utilizing

a reward system that we define as a work-life balance ratio meter. The metric

would keep track of the time a user spends throughout the day on work related

duties vis-à-vis their break times and recommended activity completion. The

ratio uses a point system that collectively rewards teams for spreading out of

work throughout the day with the recommended number of breaks in between

work sessions being achieved. Points are also rewarded for completing daily

tasks, which allows the users to focus on something other than work and

encourages them to socialize with other team members. Before the start of an

iteration, the team manager sets a budget for the reward within the app, as well

as the number of points needed for the team to get the reward. The employees

can then submit suggestions for what type of rewards they would like. As being

social is proven to reduce burn-out, the rewards should be different types of

social events, like for example office parties, cabin trips, dinner events etc.

(Aumayr-Pintar et al., n.d. p.16). Optionally, the reward could also be a monetary

bonus or time off, if the team would rather want that. To decide on the reward

for an iteration, the employees would vote through the app on the reward that

they want. The votes of the employees would be valued according to the number

of points that they received during the iteration, to further motivate taking

enough breaks. As the employees are not able to see how many points others

have accumulated, there would not be unnecessary pressure to earn a lot of

points, but with good rewards the users would feel motivated to help their team

reach the goal. The employees would also be able to see their team’s point total,

and the app would display statistics about whether the team is behind or ahead

of schedule to reach the iteration goal.

7

1. General data of the company offering the project
● Name: BonusBreak
● Acronym: BB
● Description: New software company that wants to help employees all over the

world to live a more comfortable work-life balance, and have higher satisfaction
from their jobs.

● Mission: Reduce burn-out in the workplace

2. Definitions and acronyms

- Work-life balance ratio meter: Measure of the balance between work and breaks

for an user of BonusBreak
- Points: A measurement system that will reflect a user and a team’s performance

in the work aspect, taking breaks highly into consideration, and the user’s social
performance, by participating in the daily tasks. In addition, it will reflect the
frequency that the user is on the app, and more points will be rewarded for
multiple-day streaks.

- Rewards: Points generated by a team can be redeemed for a reward, such as
work retreats, monetary bonus, or days off. Rewards can be suggested to the
team manager through the app.

8

3. Initial offer and budget

3.1 Offer
3.1.1 Background

This project is targeted to companies within the technological sector. Any
company with a medium to large number of employees can benefit from
BonusBreak’s advantages, effectively reducing the burnout in the workplace and
enhancing the productivity and happiness of the employees, not only to a
personal level but also to a team level.

3.1.2 Analysis of the context

Work-fit is one of our primary competitors as they offer a wellness
management program intended to provide workers access to professionals that
will help to improve their wellness with activities such as mindfulness therapies,
yoga sessions, etc. BonusBreak differs as it focuses on both the individual and
team level. On an individual level, employees receive incentives by gaining points
for doing things that will reduce the likelihood of burnout e.g taking breaks,
complimenting coworkers for positive stimulation, and receiving bonus points
for consistently using the app. On a team level, we are utilizing a reward system
that incentivizes a work-life balance ratio by tracking the time an employee
spends working throughout the day, amount of tasks completed, and giving
employees the option of voting on what rewards they would like—whether it be
social like a dinner or trips or just time-off/monetary.

3.1.3 Main objective

The main objective is building a system that is able to prevent burn-out
syndrome through some of the known methods that allow workers to relieve
stress and improve their wellness in the workplace.

3.1.4 Scope of the project

Bonus Break aims to prevent burnout syndrome from becoming a big issue
within the workforce. If it already exists within the office, then its aim will be to
reduce it. It can reduce and prevent it simultaneously. The main limitation of our
project would be that it can only work if both the employees and team managers
are making the effort to combat burnout by using the application. With the
model in place, Bonus Break should provide the incentive needed for employees
to reap benefits as they actively combat burnout and to promote a more
collaborative work environment which will also fight burnout in the long run and
promote the use of the application as employees would want to collaborate.

3.1.5 Action plan

Below is included a description of the different phases of the project and a graph
showing how they are distributed:

https://www.work-fit.com/services/company-wellness
https://www.work-fit.com/services/company-wellness

9

Phase 1: Management and monitoring
- Gather the initial resources.
- Manage and monitor the project during the different stages.
Phase 2: Analysis
Phase 3: Development
- Design phase.
- Implementation phase.
Phase 4: Data loading and validation
- Verification and validation.
- Deployment.

To get the estimation of the amount of time the project will take we have used the
number of use cases in the use case diagram. By dividing the number of use cases
by 4 we get an estimation of the number of months that will take to complete the
project. Considering we have 23 use cases, and two of them has at least 4
transactions, we get the following:
- 21/4 = 5,25 months for simple use cases
- 2/4 * 1,5 = 0,75 months for average use cases
- Total time to complete the project: 6 months.

Figure 1: action plan

3.1.6 Teamwork

Below are included two graphs detailing the number of software engineers and
programmers employed in each phase. Notice that phase 3 has been separated
into the design and implementation phases.

10

Figure 2: graph of the number of SE per phase

Figure 3: graph of the number of programmers per phase

3.2 Budget
3.2.1 Salaries

Taking into consideration the 23 use cases, where 21 of them are simple and 2 of them
are average use cases, we got from the action plan a total amount of 6 months of project
development.

The gross salaries have been based on the averages in Spain. These salaries are as
follows:

- Software engineer: 2.800€ per month.
- Programmer: 2.300€ per month.

Both job positions’ salaries are based on a 8 hours per day, 5 days a week model.

11

Breakdown of the salaries:
● Software Engineers.

○ Phase 2:
3 engineers * 1’5 months * 2.800€/month = 12.600€

○ Phase 3:
2 engineers (design) * 1 month * 2.800€/month + 1 engineer
(implementation) * 1’5 month * 2.800€/month = 9.800€

○ Phase 4:
2 engineers * 1 month * 2.800€/month = 5.600€

○ Software Engineers subtotal: 28.000€
● Programmers.

○ Phase 3:
3 programmers * 1’5 month * 2.300€/month = 10.350€

○ Phase 4:
1 programmer * 1 month * 2300€/month = 2.300€

○ Programmers subtotal: 12.650€
● Total: 40.650€

3.2.2 Table of the budget

Description Total

Salary 40.650€

Computer equipment 3.300€

Software 800€

Consumables 360€

Travel expenses 3.900€

VAT (21%) 10.292,10€

Profit (10%) 5.930,21€

Risk (15%) 8.895,32€

TOTAL 74.127,63€

Figure 4: Table of the budget

First payment: 29.651,05€

Second Payment: 44.476,58€

4. Software Configuration Management Plan

INTRODUCTION

4.1 Purpose of the Plan
The Plan detailed below is aimed at both the development staff and the

management team. The aim is to make the project sufficiently robust to collect

12

information about the state of the product and to make a change. The changes
are especially delicate in this one, since there are elements that require special
attention and care when modifying them.

It is therefore intended to document each baseline and each change made as
indicated below when detailing configuration management activities.

4.2 Scope
This SCM plan will apply to the project BonusBreak.

4.3 Definitions and Acronyms
The following are the acronyms used in this Configuration Management Plan:
SCM - Software Configuration Management
UML - Unified Modeling Language
CE - Configuration Element

4.4 References
Aumayr-Pintar, C., Cerf, C., & Parent-Thirion, A. (n.d.). Burnout in the

workplace: A review of data and policy responses in the EU. EU Agenda.

Retrieved February 18, 2022, from

https://euagenda.eu/upload/publications/untitled-178342-ea.pdf

Burn-out an "occupational phenomenon": International Classification of

Diseases. (2019, May 28). WHO | World Health Organization. Retrieved

February 18, 2022, from https://www.who.int/news/item/28-05-2019-burn-

out-an-occupational-phenomenon-international-classification-of-diseases

Cross-platform mobile frameworks used by global developers 2021. (2021, July

16). Statista. Retrieved March 6, 2022, from

https://www.statista.com/statistics/869224/worldwide-software-developer-

working-hours/

MANAGEMENT SPECIFICATIONS

This section identifies the coordination and management tasks that will be necessary
to carry out the SCM.

4.5 Organization
There must be permanent and direct contact between the development staff and

the change control committee, so that delays in the processing of a change are

13

as short as possible, so that both improvement and correction processes are not
tedious work.

Both the change control committee and the other development staff should pay
special attention to the points where it has been stipulated that baselines will be
established within the development. For more information see the section on
Definition and Establishment of Baselines.

4.6 Responsibilities
Change control committee: Brian Jesse Gatukui Kimani, Elvis Vasquez, Álvaro Morata

Hontanaya

Responsible for SCM: Ainara Machargo

Librarian: Maria Opland

Rest of the development staff: Tommy Woldseth, Justin Pimentel

4.7 Applicable policies, directives and procedures
The applicable procedures are described in the section: "Configuration Change

Control".

CONFIGURATION MANAGEMENT ACTIVITIES

The following is a description of the SCM activities that will be carried out during the
development of this project.

4.8 Configuration Identification

4.8.1 The preliminary product hierarchy is established

first overview of the structure and elements that the software system will have.

Slide 36

Make small graph
Figure 5 General system structure

14

This app will encourage socialization between coworkers, a healthy work life, & proper rewards for employees.

4.8.2 Selection of the configuration elements

All configuration elements:

● Offer

● Budget

● Quality Plan

● SCM Plan

● SCM Plan Review

● First draft of the use case model

● Estimation

● Estimation review

● Schedule

● Schedule review

● Feasibility analysis (including requirements specification)

● Feasibility review

● Use cases model

● Use cases model review

● Prioritization of use cases

● Prioritization of use cases review.

● Definition of high-level use cases.

● Definition of high-level use cases review

● Use cases in extended format.

● Use cases in extended format review

● Conceptual model

● Conceptual model review

● Operation Contracts

● Operation Contracts review

● Class diagram

● Class diagram review

● Sequence diagrams

● Sequence diagrams review

● Transition states diagram

● Transition states diagrams review

4.8.3 Selection of the identification scheme

CE code Name Desc. Date project Baseline Type Appointee

15

Figure 6: Template for the identification scheme

4.8.4 Definition of relationships

Dependency

CE 1 CE 2 Date

Derivation

CE 1 CE 2 Date

Succession

CE 1 Previous Version Next Version Date

4.8.5 Definition and establishment of baselines

Our baselines are as follows:
- Phase 0: Initial planning.
- Phase 1: Planning and requirements specification.
- Phase 2: Construction Phase.

- Iteration 1
- Analysis
- Design
- Coding
- Testing

- Phase 3: Installation phase.

The purpose of these baselines is to offer the team a possibility to make

any informal changes before the baseline, but also any formal changes once the
processes are done, allowing the team to constantly update and maintain the
project and ensure that the phases are going as planned.

16

4.8.6 Definition and establishment of software libraries

As BonusBreak is a native mobile application we would either have to make one Android
version and one iOS version, or we could use a hybrid framework to make one version
that works for both operating systems. We have chosen to use React Native which is
one of several available hybrid frameworks for mobile application development. React
Native is an open source JavaScript framework that allows us to develop and maintain
one codebase instead of two. This will keep costs for the project down, and productivity
of the developers up. It is also possible to make a prototype quickly with React Native,
which is very beneficial when using an iterative methodology. It is one of the most
popular hybrid frameworks, which leads to a big development community and a lot of
helpful additional packages (Cross-Platform Mobile Frameworks Used by Global
Developers 2021, 2021). The documentation for React Native is available here:
https://reactnative.dev/docs/getting-started. React Native is MIT licensed, which allows
us to sell software that is based on it.

4.9 Changes control
It is requested:

APPLICABLE CHANGE CONTROL PROCEDURE

1. Initiation of change: the request for change, duly completed by the

applicant, shall be submitted.

2. Classification and registration of the request for change.

3. Evaluation and Approval or rejection by the Change Control

Committee.

4. In case of approval, notification to the originator and to the managers

of the CEs concerned.

5. The change is made by entering a monitoring and control process.

6. Once the change has been made, the change control committee

certifies that it has been made correctly.

7. Finally, the originator of the change is notified of this certification.

⮚ Change Request Report Format

https://reactnative.dev/docs/getting-started

17

Change Request Report

System name:

System code:

Level of implementation of change:

System:

Hardware:

Software:

Documentation:

Another one:

Name of the applicant:

Phone:

Date of application:

Priority of change:

Routine:

Urgent:

Very urgent:

Are other hardware or software
systems affected?

YES

NOT

Description of the change:

Need for change:

Estimation of the effect of the change on other systems, software and equipment

Alternatives to change:

To be filled in by the change control team

Date of receipt of application:

Disposition:

Signed:

Date:

Figure 7: Report 1 Change Request Report

⮚ Change Certification Report Format

18

Certification of the change:

Date of certification:

Originator:

Recipient:

Results obtained

Signed:

Figure 8: Report 2 Change certification report

4.10 Status account

Configuration Items:
Acronym meanings:
Development Processes: DP
Management Processes: MP
Control Processes: CP
Offer: O
Budget: B
Use Case Model: UCM
Software Configuration Management Plan: SCMP
Quality Plan: QP
SCM Plan review: SCMPR
Feasibility Analysis: FA
Feasibility Analysis: FAR
Use cases model: UCM
Use cases model review: UCMR
Prioritization of use cases: PUC
Prioritization of use cases review: PUCR
Definition of high-level use cases: HLUC
Definition of high-level use cases review: HLUCR
Estimation: E
Estimation Review: ER
Schedule: S
Schedule Review: SR
Use cases in extended format: UCEF
Use cases in extended format review: UCEFR
Conceptual model: CM
Conceptual model review: CMR
Operation Contracts: OP
Operation Contracts review: OPR
Class diagram: CD

19

Class diagram review: CDR
Sequence diagrams: SD
Sequence diagrams review: SDR
Transition states diagram: TSD
Transition states diagrams review: TSD

CE code Name Desc. Date Project Baseline Type Appointee

MP-O Offer Describes
the project
and project
goals

2/25/22 Bonus
Break

Phase 0 Document Justin

MP-B Budget Describes
the amount
of money
that will be
needed to
develop the
project

2/25/22 Bonus
Break

Phase 0 Document Alvaro

DP-UCM use case
model draft

illustrates
the
interactions
within the
project

2/25/22 Bonus
Break

Phase 0 Document Ainara

CP-SCMP SCM plan Identifies
everything
that will
need to be
controlled
throughout
the process

3/7/22 Bonus
Break

Phase 0 Document Elvis &
Brian

MP-QP Quality plan Identifies
what to
review and
how

3/7/22 Bonus
Break

Phase 0 Document Tommy &
Maria

MP-SCMPR SCM Plan
Review

Verifies the
SCM plan is
correct

3/7/22 Bonus
Break

Phase 0 Document Elvis &
Alvaro

DP-FA Feasibility
analysis

Defines the
requirement

3/14/22 Bonus
Break

Phase 1 Document Ainara &
Justin

20

(including
requirements
specification)

s to deduce
the
feasibility of
the project

MP-FAR Feasibility
analysis
Review

Verifies the
Feasibility
analysis is
correct

3/14/22 Bonus
Break

Phase 1 Document Tommy

DP-UCM Use cases
model

defines the
use cases
that will be
used

3/28/22 Bonus
Break

Phase 1 Document Tommy &
Brian

MP-UCMR Use cases
model review

Verifies the
Use cases
model is
correct

3/28/22 Bonus
Break

Phase 1 Document Elvis

DP-PUC Prioritization
of use cases

Prioritizes
which use
cases are to
be processed
first

3/28/22 Bonus
Break

Phase 1 Document Alvaro

MP-PUCR Prioritization
of use cases
review.

Verifies that
the
prioritization
of use cases
reviews are
correct

3/28/22 Bonus
Break

Phase 1 Document Justin

DP-HLUC Definition of
high-level use
cases.

Describes
the use cases
more in
depth

3/28/22 Bonus
Break

Phase 1 Document Maria

MP-HLUCR Definition of
high-level use
cases review

Verifies the
definition of
high-level
use cases are
correct

3/28/22 Bonus
Break

Phase 1 Document Ainara

MP-E Estimation Quantifying
the efforts
used based
on the Use

4/19/22 Bonus
Break

Phase 0 Document,
Excel sheet

Brian

21

cases

MP-ER Estimation
Review

Verifies that
the
estimation is
correct

4/19/22 Bonus
Break

Phase 0 Document Elvis

MP-S Schedule Details the
planning
process

4/19/22 Bonus
Break

Phase 0 Document,
Microsoft
project

Alvaro

MP-SR Schedule
Review

Verifies that
the schedule
is correct

4/19/22 Bonus
Break

Phase 0 Document Justin

DP-UCEF Use cases in
extended
format

Provides
more details
about the
use cases

5/6/22 Bonus
Break

Phase 2 Document Tommy

MP-UCEFR Use cases in
extended
format
review

Verifies if the
extended
use case
format is
correct

5/6/22 Bonus
Break

Phase 2 Document Maria

DP-CM Conceptual
model

It is the class
model
without
methods

5/6/22 Bonus
Break

Phase 2 Document Ainara

MP-CMR Conceptual
model
Review

Verifies if the
conceptual
model is
correct

5/6/22 Bonus
Break

Phase 2 Document Brian

DP-OC Operation
Contracts

Defined for
every action
in the actor
column in
the
expanded
case format
to describe
what
happens
when the
actor

5/6/22 Bonus
Break

Phase 2 Document Elvis

22

interacts
with the
system

MP-OCR Operation
Contracts
Review

Verifies if the
operation
contracts are
correct

5/6/22 Bonus
Break

Phase 2 Document Alvaro

DP-CD Class diagram Shows the
connections
between
classes.
Every class
that appears
in the
sequence
diagram
appears in
the class
diagram.

5/6/22 Bonus
Break

Phase 2 Document Justin

MP-CDR Class diagram
review

Verifies if the
class
diagram is
correct

5/6/22 Bonus
Break

Phase 2 Document Tommy

DP-SD Sequence
diagrams

One for
every
operation
contract to
show when
an actor and
systems
interacts
with a each
other

5/6/22 Bonus
Break

Phase 2 Document Maria

MP-SDR Sequence
diagrams
review

Verifies if the
sequence
diagrams are
correct

5/6/22 Bonus
Break

Phase 2 Document Ainara

DP-TSD Transition
states
diagram

Used to
show the
performance
of a class

5/6/22 Bonus
Break

Phase 2 Document Brian

23

MP-TSDR Transition
states
diagram
review

Verifies if the
transition
state
diagrams are
correct

5/6/22 Bonus
Break

Phase 2 Document Elvis

Relationships:

Dependency

Offer Budget March 20, 2022

Quality Plan Software
Configuration
Management Plan

Estimation March 20, 2022

Quality Plan Software
Configuration
Management Plan

Feasibility Analysis March 20, 2022

Use case model
draft

Use case model Use case model
review

March 27, 2022

Use case model Prioritization of use
cases

 March 27, 2022

Use case model Definition of high-
level use cases

 March 27, 2022

Use case model Estimation Schedule April 19, 2022

Use cases in
extended format

Operation Contract May 06, 2022

Class diagram Sequence Diagram May 06, 2022

Operation contract Sequence Diagram May 06, 2022

Derivation

Offer and
Budget

Quality Plan Software
Configuration
Management
Plan

Estimation March 20,
2022

Feasibility Feasibility March 27,

24

Analysis analysis
Review

2022

Prioritization
of use cases

Prioritization
of use cases
review

 March 27,
2022

Definition of
high-level use
Cases

Definition of
high-level use
Cases review

 March 27,
2022

Estimation Estimation
review

 April 19, 2022

Schedule Schedule
review

 April 19, 2022

Use cases in
extended
format

Use cases in
extended
format review

 May 06, 2022

Conceptual
model

Conceptual
model review

 May 06, 2022

Operation
Contracts

Operation
Contracts
review

 May 06, 2022

Class diagram Class diagram
review

 May 06, 2022

Sequence
diagram

Sequence
diagram
review

 May 06, 2022

Transition
states diagram

Transition
states diagram
review

 May 06, 2022

Definition of
high-level use
cases

Use cases in
extended
format

 May 06, 2022

Use cases in
extended
format

Operation
contracts

 May 06, 2022

Operation
contracts

Sequence
diagram

 May 06, 2022

25

Succession

CE Code Previous Version Next Version Date

MP-O N/A 1 February 20, 2022

MP-O 1 2 February 25, 2022

MP-B N/A 1 February 20, 2022

MP-B 1 2 February 25, 2022

CP-SCMP N/A 1 March 01, 2022

CP-SCMP 1 2 March 07, 2022

DP-UCM N/A 1 March 18, 2022

DP-UCM 1 2 March 25, 2022

DP-UCM 2 3 March 28, 2022

DP-PUC N/A 1 March 25, 2022

DP-PUC 1 2 March 28, 2022

DP-HLUC N/A 1 March 25, 2022

DP-HLUC 1 2 March 28, 2022

MP-E N/A 1 April 10, 2022

MP-E 1 2 April 19, 2022

MP-S N/A 1 April 10, 2022

MP-S 1 2 April 19, 2022

DP-UCEF N/A 1 April 26, 2022

DP-UCEF 1 2 May 06, 2022

26

DP-OC N/A 1 April 26, 2022

DP-OC 1 2 May 06, 2022

DP-SDR N/A 1 April 27, 2022

DP-SDR 1 2 May 06, 2022

DP-TSDR N/A 1 April 27, 2022

DP-TSDR 1 2 May 06, 2022

For the class diagram and the use case model, the relationship would be a dependence

relationship. This is because if something within one of these changes, it will directly

affect the other. When one is updated, the other should be as well.

Using the quality plan and the software configuration management plan together, we

are able to define the requirements in order to deduce the feasibility of our project. The

feasibility analysis depends on these two (quality plan and software configuration

management plan).

The use case model review depends on the use case model, which depends on the use

case model draft. It all begins with the first use case model draft, which we use as a

reference at the start. It later then gets refined and more polished to become the final

version of the use case model and lastly will have the review of this model. Our final use

case model then is used as a reference for our definition of high-level use cases. Our

definition of high-level use cases depends on our final form of the use case model.

Both the prioritization of use cases and the definition of high-level use cases depend on

the use case model to base the prioritization and the description of the use cases within

our project.

The schedule takes into consideration the use case model and the estimation in order

to make a proper schedule fit for the project at hand. It has to take into account certain

elements from these two; therefore, it depends on what comes before it in order to

make a good schedule to follow.

For the offer and budget, the relationship would be a dependency relationship, as they

both directly affect one another and take into consideration a lot of similar factors.

These two would then have a derivation relationship with the quality plan, estimation,

and software configuration management plan. These three would then have a

dependency relationship with each other because they all would affect the other. The

software configuration management plan would ensure everything that needs to be

controlled is being taken into account, while the quality plan would ensure that

everything in terms of quality standards, practices, and resources are all up to par with

27

everything happening in the project, and the estimation. Lastly, the estimation would

take all of these factors into account and would then provide a numerical quantity

depending on everything that was analyzed previously.

In order to complete the operation contracts, we needed to use information from the

use cases in extended format. Therefore, these contracts depend on these extended use

cases and vice versa–if one changes, it directly affects the other. Additionally, the

sequence diagram is also directly related to the class diagram. In order to complete the

sequence diagram, we need to continuously reference the class diagram and if one

changes, the other changes with it. Similar to this, the sequence diagram also depends

on the completion of the operation contracts. So if the contracts change, the sequence

diagram does too and they both directly correlate with each other.

The feasibility analysis review comes after the feasibility analysis, so the review is

derived from the original feasibility analysis. Similarly, this is the case when you are

dealing with the prioritization of use cases and the prioritization of use cases review, the

definition of high-level use and definition of high-level use review, estimation and

estimation review, the schedule and schedule review, use cases in extended format and

use cases in extended format review, conceptual model and conceptual model review,

operation contracts and operation contracts review, class diagram and class diagram

review, sequence diagrams and sequence diagrams review, and transition states

diagram and transition states diagram review. All of these reviews depend on the

configuration element it’s respectively reviewing. The review is derived from the original

configuration element in order to come up with a finalized review. In essence, for those

configuration elements that have a review CE associated with them, there is a derivation

relationship between both, as the revisions will take place after they are defined.

Additionally, the use cases in extended format are directly derived from the definition

of high-level use cases, since it needs that information to become more indepth with

extended amounts of information. Similar to the operation contracts being derived from

the definition of high-level use cases because we use the information found in the use

cases to build and make out contracts. Lastly, our operation contracts then are used to

directly make the sequence diagram–hence, the diagram is derived from the contracts

we make.

The succession relationships are configuration elements in which we initially started
working on, but then later edited in order to update these respective elements. The
elements we considered succession are:

Offer, Budget, Software configuration management plan, use case model,
Prioritization of use cases, Definition of high-level use cases, Definition of high-
level use cases, Estimation, Schedule, Use cases in extended format, Operation
contracts, Sequence diagrams, and Transition states diagram.

28

4.11 Configuration auditing

Continues in section 10.

5. Quality Plan

CONTENT OF THE QUALITY ASSURANCE PLAN FOR THE INFORMATION
SYSTEM

In the successive points of the document, the detailed tasks that are going to be
carried out in the fulfillment of the Quality Assurance Plan will be exposed to
check that the whole project fulfills the necessary quality criteria and that they
have been considered as indispensable for the correct accomplishment of the
project.

The revisions will be made as the project phases are completed until the final and

complete design of the product is reached.

Those responsible for carrying out the revisions and accepting the validity of the

products will be Elvis Vasquez as Quality Manager and Brian Jesse Gatukui Kimani
as Project Manager. In addition, all the members of the work team must carry
out the revisions assigned by the Project Manager and communicate to the two
people in charge of the Quality Assurance Plan in the event that any fault is
found.

The following points of the document detail the specific reviews that will have to be

carried out in compliance with the Quality Assurance Plan. The establishment of
this quality assurance plan will begin in the System Feasibility Study and will be
applied throughout the development of the software project (analysis, design,
implementation...).

For each of the revisions, an Audit Report must be added that includes the approval

or rejection of the revised product, indicating, if necessary, the causes for
rejection of said product.

29

REVIEW OF THE SYSTEM'S FEASIBILITY STUDY

DOCUMENT REVIEW

Elvis Vasquez, as Quality Manager, will confirm that the requirements have
been specified in a structured way, with a precise and complete content, as
established in the Quality Assurance Plan. Our Quality Manager will ensure that
the requirements specification document offers the following features:

● Identification of absolutely all user requirements.

● Consistency between the content of the document and its objective.

● Each requirement describes the functionality that corresponds to it.

● Correspondence between the requirements of the document and the

requirements obtained from the user, so the requirements specification is
complete.

● Description of the requirements in clear, unambiguous language and therefore
precise

● The feasibility study is self-descriptive, as its structure and content are described.

● A requirements traceability matrix shall be carried out to check that all user
requirements have at least one software requirement associated with them and
are thus present in the system design.

30

REVIEW OF USE CASES

REVISION OF THE USE CASE DIAGRAM

Use cases are a very important tool in the software development process and we
use them to estimate activities before modeling or building a software
development process.

With the use cases we have the functionalities and characteristics or basic

requirements of the system. They are not based on any language so they are
independent of them.

From the use cases, using the use case method, the size of the software will be

estimated. The requirement to be able to use this tool is to define a use case
model that represents well the domain of the problem to be addressed.

Maria Opland, as Quality Responsible, must carry out the revision of the Use Case

Diagram, for this she must verify that the use case diagram complies with the
following:

● The use case diagram describes the behavior of the system, i.e. the complete

functionality of the software project to be developed.

● The use case diagram includes all identified use cases representing all system

functionalities.

● The use case diagram includes all the actors identified and involved in the

system.

● The use case diagram includes all the dependencies and relationships between

actors and use cases.

● The use case diagram complies with the graphic notation defined in UML

modeling language.

● The use case model includes a glossary of terms that describes the terminology

used.

31

REVIEW OF HIGH-LEVEL USE CASES

Elvis Vasquez, as Quality Manager, must carry out the revision of the high level Use
Cases, to do so, she must verify that they comply with the following

● The high-level use cases contain the name, actors, description and type of use

case.

● Each use case describes how to achieve a single goal, that is, it describes a

feature of the system.

● Each use case contains a textual description of the functionality associated with

the appropriate level of detail, including ways in which the intended actors could

work with the system. The description will use the language of the end user.

● The use cases do not describe internal system functionality, nor do they explain

how it will be implemented. They do not include technical jargon.

● Each use case shows the steps that the actor follows to perform an operation.

● The use cases comply with the graphic notation defined in UML modeling

language.

32

CONFIGURATION MANAGEMENT PLAN REVIEW

CONFIGURATION MANAGEMENT PLAN REVIEW

Elvis Vasquez, as Quality Manager, must carry out the revision of the Configuration
Management Plan, to do so she must verify that it complies with the following:

● The project includes a Configuration Management Plan for the control and

management of changes in which the activities to be carried out are established

that allow the control and management of changes in the project.

● The Configuration Management Plan complies with IEEE Std. 828 - 2005: "IEEE

Standard for Software Configuration Management Plans" and ANSI/IEEE Std.

1042 - 1987: "IEEE Guide to Software Configuration Management".

● The management of the configuration defined in the SCM is carried out during

all phases of the software project development, including maintenance and

change control.

● The SCM describes a change and version control mechanism that ensures the

production of quality software.

● The MTS includes the procedure for generating the necessary documentation for

recording and monitoring the changes that occur during the development of the

project.

33

REVIEW OF PROJECT ESTIMATION AND PLANNING

REVISION OF ESTIMATE

When planning a project, an estimate of the cost and human effort required must
be obtained. Estimation is one of the crucial activities in the software project
management process, necessary for project planning.

Maria Opland, as Quality Responsible, must make the revision of the estimate made

for the software development project, for this she must review the following:

● The method used to estimate the effort for the development of the software

project uses size-oriented metrics based on points of use cases.

● Before each iteration, verify that the estimate has been made taking into account

the use cases included in the estimate.

● The use case points for each of the iterations have been calculated following the

procedure established for this estimation method which includes the following

steps:

o Classify each iteration between actor and chaos of use according to its

complexity and assign a weight according to it.

o Calculate the complexity of each use case according to the number of

transactions or steps in the case.

o Calculate the Unadjusted Use Case Points of the iteration.

o Calculate technical and environmental complexity factors.

o Calculate Adjusted Use Case Points.

● Once the use case points have been obtained for an iteration, verify that the

corresponding effort required to carry them out in that iteration has been

calculated from them.

34

PLANNING REVIEW

Planning is the process of establishing objectives and choosing the means to achieve
them. It is essential to carry out an analysis of the project in order to foresee
from the beginning and during the development of the project the situations that
may arise and to create the necessary conditions to be able to solve them or
minimize the consequences that they may have on the development of the
project and the achievement of the objectives.

Elvis Vasquez, as Quality Manager, must carry out the revision of the planning made
for the software development project, for this she must verify the following:

● A prioritization of use cases to be developed has been carried out and the

iterations that will make up the complete development of the software and the

use cases included in each of them have been defined.

● An estimation of each iteration has been made based on Use Cases. Based on

this estimate, planning will be carried out.

● Before starting an iteration, a planning of the iteration will be done based on the

estimation of the effort needed according to the points of use cases.

● The planned planning for the development of the software project will be

adapted and updated as the project progresses.

● Planning includes how many people should participate in the project team, what

technical skills are needed, when to increase the number of people and who will

participate.

● The planning done defines how the team that will work on the software

development project will be organized.

● The planning follows the methodology applied to the software development

project which is, in this case, incremental iterative based on use cases.

● A Gantt chart is included, representing all the activities to be carried out

throughout the project development period. The diagram connects the different

activities based on their relationships of precedence and defines the estimated

resources and times for each activity.

● The Gantt chart reflects the tasks and key dates, the milestones and the

dependency between tasks.

● The quality metrics to be applied to the planning carried out will be

35

o Speed at which objectives or requirements are completed in each

iteration

o Urgency and priority of the completed requirements, to check if there is

any misalignment with the project objectives and the organization's

strategy.

o Requirements completed in iteration.

o Built-in changes and added requirements on the initial scope of iteration

o Number of requirements completed out of total requirements.

o Deviation of project results from initial planning

o Budget available, budget spent and financial deviation from initial

planning.

o Customer satisfaction with regard to the results obtained.

36

TEST PLAN REVIEW

TEST PLAN REVIEW

Elvis Vasquez, as Quality Manager, must carry out the revision of the Test Plan, for
this she must do the following:

● It should be checked that there are rules for carrying out the tests so that it is

possible to verify that these tests have been carried out, as well as indicating

how to act in the event of differences between the expected result and the result

obtained.

● A traceability matrix must be carried out to ensure that there is evidence to verify

all software requirements.

37

REVIEW OF THE PRODUCTS OF THE ANALYSIS
PROCESS

REVIEW OF USE CASES IN EXPANDED FORMAT

Maria Opland, as Quality Responsible, must carry out the revision of the Use Cases
in expanded format, for this she must do the following:

● From each high-level use case, an expanded use case has been built, in each

iteration.

● Each expanded use case is composed of two sections, the header that includes

the name, actors, description and type of use case, and the body that describes

typical events and alternatives to typical events.

● Expanded use cases define the initiator of the use case.

● The body of the use case consists of two columns describing the actions of the

actor and the system responses to them.

REVIEW OF THE CONCEPTUAL MODEL OF THE ANALYSIS

Elvis Vasquez, as Quality Manager, must carry out the revision of the Conceptual
Model, for this purpose the following must be verified:

● The analysis model represents the aspects of the problem in a way that is close

to the concepts of the problem domain and describes the main characteristics of

the system. The analysis model carried out in each of the iterations that make

up the project will be validated.

● The conceptual model does not include implementation decisions. It will also be

verified that it is independent of the implementation.

● The conceptual model complies with the graphic notation of the UML modeling

language. You should also check that the notation has the necessary level of

detail to represent the problem, without being overloaded.

● The conceptual model has been made through an object model or class diagram

(without methods) that defines the system properties. The entities and the

relationships between them have been identified for each iteration.

● The quality metrics to be applied to the conceptual model resulting from the

analysis in each iteration are the following:

38

o Semantic quality: correspondence between the model and the domain,

i.e. the model reflects the domain. The validity of the model will be

verified, i.e. that all the facts included in the model are correct and

relevant to the domain.

o Completeness: the model will be checked to ensure that all facts are

correct and relevant to the domain.

o Language quality: the modeling language used to capture the domain is

a language that is easy to understand by all participants. The

formalization of the language allows the execution of the system.

o Syntactic quality: there is a correspondence between the externalization

of the model and the extension of the language in which the model is

written.

REVIEW OF OPERATING CONTRACTS

Elvis Vasquez, as Quality Manager, must carry out the revision of the operation
contracts that are generated, for this purpose the following must be verified:

● For each case of use, there must be a contract of operation for each action of the

actor.

● Each operating contract will consist of the following fields: name,
responsibilities, cross references, notes, exceptions, output, preconditions and
postconditions.

● Cross-references in the contract shall correspond to references to the
requirements defined in the project that are resolved with the use case to which
the operation contract belongs.

39

REVIEW OF THE DESIGN PROCESS PRODUCTS

CLASS DIAGRAM REVIEW

Assessing whether the design obtained meets the required quality level is important
in order to know the effectiveness of the processes that have been modeled and
whether or not they require great effort for their implementation.

Evaluating design class models by applying metrics allows for the detection of

shortcomings and potential improvements from early stages of product
development, preventing them from spreading to subsequent phases and
enabling the creation of a robust system from its conception.

Maria Opland, as Quality Responsible, will have to carry out the revision of the Class

Diagrams, for this she will have to check the following:

● Class diagrams will be made for each iteration with UML and the design will be

totally independent of the implementation.

● The comprehensibility of the model or facility with which the class diagram can

be understood, the analyzability of the model or facility offered by the class

diagram to discover its deficiencies or errors, and the modifiability of the

diagram or facility offered by the diagram to make a specified modification,

either by error, by a concept not taken into account or by a change in

requirements, shall be measured.

● The following metrics will be used to measure the structural complexity of the

class diagrams:

o Number of classes: total number of classes.

o Number of attributes: total number of attributes.

o Number of methods: total number of methods.

o Number of partnerships: total number of partnerships.

o Number of aggregations: total number of aggregation ratios.

o Number of dependencies: total number of dependency relationships.

o Number of generalizations: total number of generalization ratios.

o Number of generalization hierarchies: total number of generalization

hierarchies

40

o Number of aggregations: total number of aggregation ratios.

o WMC: class weighted methods, according to their complexity.

o Maximum ITL: is the maximum ITL value obtained for each class in a class

diagram. For a class within a generalization hierarchy, it is the length of

the longest path from the class to the root of the hierarchy.

o Maximum HAgg: is the maximum HAgg value obtained for each class in

the class diagram. For a class within an aggregation hierarchy it is the

length of the longest path from the class to the leaves.

● The proposed metrics are highly related both to maintenance time and to the

comprehensibility, analyzability and modifiability of the designed class diagram.

REVIEW OF SEQUENCE DIAGRAMS

Elvis Vasquez, as Quality Manager, must carry out the revision of the sequence
diagrams generated in the project during the design phase of each iteration, for
this purpose the following must be verified:

● For each use case, sequence diagrams have been designed that define both the

typical course and the atypical courses of the events defined in them.

● The sequence diagrams show the interaction represented by the sequence of
messages between the class instances and actors. The diagrams show instances
and events that describe the interaction between the classes.

● Time flows down the diagrams and shows the control flow from one participant
to another.

● The UML notation is followed in the definition of the diagrams. The elements
included in the sequence diagram are:

o Name of the sequence diagram.

o Lifelines for actors and class instances.

o Messages between instances that define the method that the message

calls on the receiving lifeline. In addition, the receiving line is linked to an
interface or class.

o Loops indicate the number of times the loop is executed if known.

41

REVIEW OF STATE DIAGRAMS

Elvis Vasquez, as Quality Manager, must carry out the revision of the state diagrams
generated in the project during the design phase of each iteration, for this
purpose the following must be verified:

● The defined state diagrams describe the behavior of the system, with each

diagram showing the behavior of a single object during its entire life cycle.

● State diagrams contain states and transitions, and the transitions between them
include the corresponding events or actions.

● The state diagram shows all possible states that the object goes through during
its life in the application as a result of the events that reach it.

● There is an initial state and a final state and all states represented in the diagram
are accessible.

6. Estimation
The most notable takeaway from the estimation excel sheet is that we have

underestimated the amount of time that the project would take in the initial
offer. We estimated a total of 6 months for BonusBreak’s completion, yet, the
excel estimation sheet revealed that given our priorities, we should expect 9.5
months until completion of our project. This is due to making specifications in
the Technical Complexity Factors, where the estimation team decided to
prioritize factors such as concurrency, security, end-user online efficiency,
response time, and distributed systems. All the Technical Complexity Factor
points totalled 43.5 points and gave us a Technical complexity factor of 1.035.
These factors, multiplied with our 131 unadjusted use case points and 0.7925
Environmental Factor gave us a 107.45 total Adjusted Use Case Points.
Multiplying these Adjusted Use Case Points with the 20 hours/use case
determined, gives us that our project total coding time is 2149 man hours, which
multiplying that by 100 and dividing by 40 hours totals us 5372.5 total man hours,
which adjusted for total months for the project is 9.5 months.

Given the estimation, we should expect to have 3 workers for any phase of the

project, as we also estimated in the budget; and an additional one for half of the
total duration, which is the only difference regarding the people working in the
project.

The amount of money needed to pay the salaries of the employees sums up to

85.625,10€, doubling the estimation we made during the budget due to the
additional worker and the additional 3.5 months.

42

7. Planning

The Gantt chart that we developed in Microsoft Project is delivered as a separate file.
This follows the time estimation that was done using the Excel sheet for estimation. We
have decided that the project starts on February 25th and since we estimated that it
would take 9 and a half months, it will end on November 18th. Phase 0 is estimated to
last from February 25th to March 17th, phase 1 is estimated to last from March 17th to
April 6th and phase 2 is estimated to last from April 6th to November 18th. Phase 2 is
an iterative phase, which will have n iterations until the end of the project. The most
time consuming tasks of the project are coding and testing, which will take about 55%
of the time and resources available.

8. Planning and requirements specification

8.1 Feasibility study

 The purpose of BonusBreak is to encourage employees at tech companies to

have a better work-life balance and reduce burnout in the workspace by
encouraging employees to take appropriate breaks, interact with their
coworkers,enter their time working, and share their emotions while working.
Participating in these activities will allow the employees to gain points, which
they can redeem for points for monetary rewards or social events with
coworkers. This will help achieve the second main goal of BonusBreak, which is
to help workers feel properly compensated for their work by allowing them to
redeem these points for rewards. All in all, BonusBreak aims to reduce burnout
in tech company employees by encouraging them to take breaks, maintain good
relationships with their colleagues, track their feelings at work, and to receive
proper compensation for their work.
IDENTIFICATION OF STAKEHOLDERS IN THE SYSTEM

The stakeholders of our system are project managers of tech companies and the
programmers that work for these companies.

8.1.1 Requirements definition

The requirements are going to be described as follow:

Identifier:

Name:

Priority: Source:

Necessity:

Clarity: Verifiability:

43

Stability:

Description:

Figure 9: Requirements specification template

● The identification of the requirements will be done in the following way:

o Identifier: UG-Snnn, where

o U: indicates that this is a user requirement

o G: General Requirement

o S: admits the values:

▪ C: Capacity requirement

▪ A: Restriction requirement

o nnn: Consecutive numbers to identify a requirement

● The name field summarizes the requirement

● The priority will have one of the following values:

o High

o Medium

o Low

● The source field can have one of the following values:

o Customer

o Analysts

● The necessity field will have one of the following values:

o High

o Medium

o Low

● The clarity field will be assigned one of the following values:

o High

o Medium

o Low

● The verifiability field can have one of the following values:

o High

o Medium

o Low

● Stability describes the duration of the requirement over the life of the software.

● The description field serves to explain the requirement.

FUNCTIONAL REQUIREMENTS

Identifier: U-C001

Name: A user should be able to add the breaks and time working they have had during the day into
the app

44

Priority: High Source: Customer

Necessity: High

Clarity: High Verifiability: Low

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user needs to be able to add their breaks and their time working into the app in
order to calculate points

Identifier: U-C002

Name: A user should answer a brief survey during sign up

Priority: High Source: Customer

Necessity: High

Clarity: High Verifiability: Low

Stability: The requirement will only be relevant when signing up for the app

Description: The survey will include their current workstyle, means of de-stressing, interests outside
of work and any current causes of stress, anxiety and unrest in the workplace.

Identifier: U-C003

Name: A user should be given random tasks to complete during the workday

Priority: Medium Source: Customer

Necessity: Low

Clarity: High Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user will be given a couple of small tasks during the day that they can complete for
bonus points. The tasks will not be work related, and will mostly include a social element, so that the
employee can take their mind off work for a moment.

Identifier: G-C004

Name: The system should be able to remind users to take scheduled breaks

Priority: Medium Source: Analyst

Necessity: Medium

Clarity: High Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the software lifecycle

45

Description: During the break the user will receive suggested activities to partake in. The activities will
focus on a user’s preferred interests and ways of de-stressing.

Identifier: U-C005

Name: The user should be able to receive a notification to describe their current feelings/mood

Priority: Low Source: Customer

Necessity: Low

Clarity: High Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user will receive random notifications during the day to describe how they are
feeling.

Identifier: U-C006

Name: The user should be able to see their teams total points in a graph

Priority: High Source: Customer

Necessity: Medium

Clarity: Medium Verifiability: Low

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The users should be able to see how many points their team has in comparison to the
goal for the iteration. This should be visualized in some sort of a graph. Additional statistics could be
included to indicate whether the team is on track to reach their goal or not.

Identifier: U-C007

Name: The user should be able to see their individual progress in a graph

Priority: Medium Source: Customer

Necessity: Medium

Clarity: Low Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user should be able to get a visualization of their progress in points and how
implementing various recommended tasks affects their work style, productivity and improves overall
wellness. A user is restricted to view other user’s individual progress.

46

Identifier: G-R008

Name: The manager should be able to set a budget for the iteration reward

Priority: Medium Source: Management

Necessity: Medium

Clarity: Medium Verifiability: Low

Stability: This requirement is relevant at the start of each iteration

Description: The manager of a team should be able to set a budget for the team reward in order to
get appropriate reward suggestions from the team members. The budget can change from iteration
to iteration according to how much the company wants to allocate.

Identifier: U-C009

Name: The user should receive bonus points for obtaining a streak

Priority: Low Source: Customer

Necessity: Low

Clarity: High Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user should be able to receive bonus points for obtaining a streak of using the app in
consecutive days. The points received will be higher, when the streak is longer.

Identifier: U-C010

Name: The user should be able to submit suggestions for the iteration team reward

Priority: Medium Source: Customer

Necessity: Medium

Clarity: Medium Verifiability: Low

Stability: This will be relevant before an iteration, so that there is time to plan events

Description: The employees should be able to submit suggestions for the team reward so that the
reward can be something that the employees want. The cost of the reward suggestions should be
within the budget that the manager has set.

Identifier: U-C011

Name: The user should be able to vote for the preferred reward

Priority: Medium Source: Customer

47

Necessity: Medium

Clarity: High Verifiability: Low

Stability: This will be relevant at the end an iteration, so that there is time to plan events

Description: The user should be able to vote for the preferred reward that is suggested at the end of
an iteration. This contributes to the employees being more motivated to accumulate points if the
reward is attractive. The points accumulated throughout the iteration are used to vote.

Identifier: G-R012

Name: Users should be restricted from accessing other users individual progress

Priority: High Source: Analyst

Necessity: Medium

Clarity: High Verifiability: Low

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: Users should only be able to see their own individual progress, not others. This is a
measure to prevent unnecessary pressure on employees to perform highly.

Identifier: G-C013

Name: The manager should be able to add and remove employees to/from their team

Priority: High Source: Management

Necessity: High

Clarity: High Verifiability: High

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The manager needs to be able to add employees to their team so that the users are
members of the correct teams. If an employee starts working for another team or quits their job, it is
also necessary to be able to remove members from a team.

Identifier: G-R014

Name: The manager should be able to set the number of points needed

Priority: Medium Source: Management

Necessity: Medium

Clarity: Medium Verifiability: Low

Stability: This requirement is relevant at the start of each iteration

48

Description: The manager of a team should be able to set the number of points that is needed for the
team to get the reward.

Identifier: U-C015

Name: The user should be able to update their interests and ways of de-stressing

Priority: Low Source: Customer

Necessity: Low

Clarity: Medium Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user should be able to update their information from the initial survey. This will help
improve the individual guidance within the app.

Identifier: U-C016

Name: The user should be able to describe their current feelings/mood

Priority: Low Source: Customer

Necessity: Medium

Clarity: High Verifiability: Low

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user should be able to describe their current feelings/mood. This data will contribute
to how the various tasks and breaks affect their work style, productivity and improves overall
wellness.

Identifier: U-C017

Name: The user should be able to confirm that they have done a daily task

Priority: Medium Source: Customer

Necessity: Medium

Clarity: Medium Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user should be able to confirm to the system that they have done a daily task. This
contributes to the points.

Identifier: U-C018

49

Name: The manager should be able to approve/reject reward suggestions

Priority: Low Source: Management

Necessity: Low

Clarity: High Verifiability: Low

Stability: The requirement will be relevant at the start of each iteration

Description: The team manager should be able to approve and reject reward suggestions from the
team members. Reasons for rejecting might be that the suggestions are inappropriate or out of
budget.

Identifier: U-C019

Name: The user should be able to open a user profile

Priority: High Source: Customer

Necessity: High

Clarity: Medium Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the software lifecycle

Description: The user should be able to see their user profile when they want.

NON-FUNCTIONAL REQUIREMENTS

Identifier: G-C020

Name: The system shall be compatible with the latest version available of Android OS and iOS.

Priority: High Source: Analysts

Necessity: High

Clarity: High Verifiability: High

Stability: The requirement is relevant for the entirety of the software lifecycle.

Description: The system shall guarantee support for devices with Android OS version 6.0 and iOS
version 10. The system also needs to be able to support newer and future versions of these operating
systems.

Identifier: G-C021

50

Name: The system shall be protected against different types of cyber attacks.

Priority: Medium Source: Analysts

Necessity: High

Clarity: Medium Verifiability: Low

Stability: The requirement is relevant for the entirety of its lifecycle.

Description: The system shall be protected against different types of cyber attacks, such as SQL
injection, DDOS, Man-in-the-Middle attacks.

Identifier: G-C022

Name: The system shall be available for use in multiple languages

Priority: low Source: Analysts

Necessity: medium

Clarity: high Verifiability: High

Stability: The application will have multilingual functionality for the entirety of the software lifespan

Description: The application will have capability to allow users to select their preferred language and
will first be developed in English and then over time we shall gradually add other languages to the
app according to user demand

Identifier: G-C023

Name: The system must be ready for use during the working hours.

Priority: High Source: Client

Necessity: High

Clarity: High Verifiability: Medium

Stability: The requirement will be relevant for the entirety of the project’s lifecycle.

Description: The system shall guarantee its users a continuous use of the platform during working
hours and proceed with maintenance operations out of that schedule.

Identifier: G-R024

Name: The system shall comply with the GDPR and protect the privacy of its users.

Priority: High Source: Analysts

Necessity: High

Clarity: High Verifiability: High

51

Stability: The requirement will be relevant for the entirety of the software’s lifecycle.

Description: The system must comply with the General Data Protection Regulation of the European
Union as well as the different privacy laws depending on the countries the system is used in. It will
guarantee users’ privacy protection.

Identifier: G-R025

Name: Ethical Data Processing

Priority: High Source: Analysts

Necessity: High

Clarity: Medium Verifiability: Medium

Stability: The system should maintain data privacy throughout the Software lifetime.

Description: The software will have checks in place to ensure ethical data processing. personal user
data will not be used for financial gain or supplied to third parties for money. App functionality shall
only rely on data that the user allows the software public access to and private information shall be
stored in accordance with respective state privacy laws.

52

8.1.2 Study of alternative solutions

The study of alternative solutions will be made with the following
methodology:

- Firstly, we will specify a problem that is not considered in the
requirements.

- Secondly, we will propose a solution to this problem that may deviate
from the original idea of the project.

- Lastly, we will estimate the additional time and cost that would take to
implement the solution.

The ideas given in the next section will be evaluated in section 8.1.4, stating
why we think these solutions would be a good or bad addition to the
project.

This methodology has been extracted from page 288 of SWEBOK v3.0,
chapter 15-10.

8.1.3 Valuation of alternatives

Using the methodology from 8.1.2, we have defined the following alternatives:
A. Problem: users do not have an option to opt out of the team rewards.

Solution: implement a functionality that lets users opt out of those
rewards.
Implementing this solution would take approximately ¼ of a month, as it
would need an use case to be added in the Use case diagram.

B. Problem: users do not have a medical solution inside the app in case of
already having the burnout syndrome.
Solution: offering a functionality where users can communicate directly
with psychologists and other medical staff to receive support from them
and other ways to deal with burnout.
Implementing this alternative would take around 4 to 6 use cases, so it
would take around a month or month and a half to complete it.

C. Problem: Users do not have a chat feature.
Solution: Put in place a chatbox feature for teams on the application that
would allow teammates to interact.
The implementation of this feature would also increase the timeline for
building the app by around ½ - ¾ of a month due to 2-3 new use cases.

D. Problem: Users cannot view other teammates’ progress for comparison
purposes that may encourage taking of breaks.
Solution: Add a team tracker feature that shows all team member
contributions in order to encourage more participation.
With approximately 2 new use cases, this feature would take half a
month of time and resources to implement.

53

8.1.4 Solution selection

 In this section will be detailed the result of analyzing the alternatives written in
the previous section and detailing why they have been revoked or accepted.

A. This solution has been revoked in a first instance, as it would interfere
with one of the main objectives of the project, which is encouraging
employees to socialize in the workplace.

B. This solution would be a very good functionality to add to the project, as
it would help users that are already suffering from burnout syndrome in
a more meaningful or effective way, as they are being treated directly by
experts in the field. The only restriction to adding this solution to the
project would be that it would add around a month or month and a half
of additional time in order to develop it, which would increase the cost
of the project by around an additional 25%.

C. An issue that invalidates this solution is that BonusBreak hopes to
increase social “in person” cohesion within the workplace while reducing
burnout but the chat feature does not lead us to attaining this goal. There
are also many other work chat applications like Slack therefore
implementing this would not be unique and may be a waste of resources
as it is not a crucial feature for BonusBreak. Therefore this solution must
be revoked

D. A caveat to this might be that accessing teammate info on the app may
be a catalyst to unhealthy competition or stigma for teammates who are
not putting in more effort in accomplishing tasks. As a result we have
chosen to revoke this option.

54

8.2 Use case model and traceability matrix

 Figure 10: Use case diagram for BonusBreak

55

Use cases:

Code Name

UC1 Sign up

UC2 Fill in survey

UC3 Break reminder

UC4 Receive notification

UC5 Describe current feelings

UC6 Enter break

UC7 Enter time working

UC8 Calculate points

UC9 Do a daily task

UC10 Daily check-in

UC11 Set reward budget

UC12 Submit reward suggestion

UC13 Approve/deny reward suggestion

UC14 Be given daily task

UC15 Vote on team reward

UC16 Open user profile

UC17 Visualize individual score

UC18 Visualize team score

UC19 Add/remove team members

UC20 Set number of points needed

UC21 Update user info

UC22 Approve/deny team reward

UC23 Redeem points

Figure 11: Table of use cases

56

 UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC
10

UC
11

UC
12

UC
13

UC
14

UC
15

UC16 UC17 UC18 UC19 UC20 UC21 UC22 UC23

U-C001 X X

U-C002 X X

U-C003 X

G-C004 X

U-C005 X

U-C006 X

U-C007 X

G-R008 X

U-C009 X X

U-C010 X

U-C011 X X

G-R012 X

G-C013 X

G-R014 X

U-C015 X

U-C016 X

U-C017 X

U-C018 X X

U-C019 X

Figure 12: Traceability matrix

8.3 Use cases high level description

Use Case: Sign Up
Actors: Employee
Type: Primary, Essential
Description: A user opens the homepage of the app and clicks on a sign up button
which will prompt the client for an email address, username, company they work for
and contact information in order to create an account.

Use Case: Fill In Survey

57

Actors: Employee
Type: Primary, Essential
Description: Once the user has signed up, they will be prompted to answer a survey

where they will detail work habits such as break habits, causes of stress or anxiety
in the workplace, and sign in with their DevOps account to access their stories and
sprint information to adapt the information gathered in the survey to their current
work schedule. The information from this survey will be used to suggest break times
and track improvement in feelings for the employee.

Use Case: Receive Notification
Actors: Employee
Type: Primary, actual
Description: The employee will receive a few notifications throughout the workday that

present themselves as opportunities to gather points to reach a reward, but
sparingly to not distract the employee too much from their work. An employee could
receive a push notification reminding them when it’s time to take a break and to
describe how they're feeling today at work.

Use Case: Break Reminder
Actors: Employee
Type: Primary, Essential
Description: Throughout a given workday, BonusBreak will remind employees to take

breaks in order to prevent burnout by overworking. These breaks serve as a method
of relieving stress for employees in order for them to be more efficient as they are
working throughout the given day/week. This will be one of the notifications the
employees will receive.

Use Case: Describe Current Feelings
Actors: Employee
Type: Primary
Description: In order to track how employees are feeling as they are working,

BonusBreak will send employees notifications in order for them to write down their
feelings about the given day/situation. This will be one of the other notifications
employees will receive throughout the workday.

Use Case: Enter Break
Actors: Employee
Type: Primary, Actual
Description: Users will have a trigger function/button to indicate to the app that they

are entering a break period in order for them to keep a record of the breaks they
have taken in the day and also trigger a timer for the break period.

Use Case: Enter Time Working
Actors: Employee
Type: Primary, Actual
Description: Similar to the “Enter Break” feature, Enter time working will allow the user

to notify the app that they have finished their break period and are going back to

58

their working schedule. This will trigger points to be rewarded for the break taken
as well as switch the timer from timing the break to timing the working hours for
record keeping purposes.

Use Case: Do a Daily Task
Actors: Employee
Type: Secondary
Description: Every day, an employee will have optional tasks that are meant to improve

their social and personal relationship with work. Tasks could be things such as
complimenting a coworker, inviting a coworker to lunch, or even revising your
schedule for the week and taking 10 minutes to organize yourself. These tasks are
purely optional but reporting to BonusBreak that you participated in these will
reward you bonus points.

Use Case: Daily Check-in
Actors: Employee
Type: Primary, Actual
Description: The employee will be able to check in on BonusBreak everyday in order to

gain more points. This will be similar to describing their daily feelings, doing a daily
task, or entering break/time working. This allows the system to reward the
employee for checking in.

Use Case: Calculate Points
Actors: Employee
Type: Primary, Essential
Description: The points the Employee has accumulated from the activities Enter Break,

Enter Time Working, Do a Daily Task, and Do a Daily Check-in are calculated by the
system and displayed on the user’s profile.

Use Case: Set Reward Budget
Actors: Team Manager
Type: Secondary
Description: The team manager will set a monetary budget (viewable by only them) for

the designated reward. This monetary budget will help the manager to be able to
translate this into how many points they deem appropriate for the reward and to be
able to track if these funds are still available to carry out said reward.

Use Case: Submit Reward Suggestion
Actors: Employee
Type: Secondary
Description: The employee can write in a text box of 500 characters a suggestion for a

reward to be evaluated and added by the Team Manager. This text is only visible to
the manager and is not anonymous.

Use Case: Approve/Deny Reward Suggestion
Actors: Team Manager
Type: Secondary

59

Description: The team manager will be able to see the suggestion written by an
employee and decide if this reward should be included for the employees by clicking
an approve/deny button and adding the reward for the rest of the employees to see.

Use Case: Vote on Team Reward
Actors: Employee
Type: Secondary
Description: The employees within a given team will be able to choose on a reward they

all agree upon, since all of their joined accumulated points are taken into
consideration in order to be redeemed. This reward will serve as a way to further
relieve stress as a team, instead of just on an individual level. This will only be
possible by the team redeeming the points they have gained.

Use Case: Redeem Points
Actors: Employee
Type: Primary, Essential
Description: The employee is able to access the rewards section of the app and see the

possible rewards set up by the Team Manager. Each reward will be valued a set
number of points, and the employee must have exactly the number of points or over
the amount needed to redeem a prize, if not, an error message will be displayed of
insufficient points. If the reward is redeemed, the points will be deducted from their
total accumulated points. Rewards can be individual rewards, where only the
Employee’s points are taken into consideration, or team rewards, where the whole
team's total points are needed to be redeemed.

Use Case: Approve/Deny Team Reward
Actors: Team Manager
Type: Secondary
Description: The team manager will receive a notification that the team is trying to

redeem a reward. It is up to the team manager to say if they are able to redeem this
reward or if they need to change it to something else and deny the reward. If the
reward is approved, the team members will be notified. If the reward is denied, the
team members are reimbursed their points.

Use Case: Open User Profile
Actors: Employee
Type: Secondary
Description: The employee is able to view their user profile in order to access

essential information such as their points accumulated as an individual, the points
accumulated as a group, and edit their user information.

Use Case: Visualize individual score
Actors: Employee
Type: Primary, actual
Description: The employee is able to access the points they have accumulated

individually by taking breaks, completing daily tasks, their time spent working, and
by checking-in to the app.

60

 Use Case: Visualize team score
 Actors: Employee
Type: Primary, actual
Description: The employee is able to access the points they have accumulated as a

group, where each team member’s individual score is added up for a total team
score, which can be used to redeem a team reward.

 Use Case: Add/remove team members
 Actors: Team Manager
Type: Primary
Description: The Team Manager is allowed to manage the employees inside a team by

removing or adding employees to their designated team.

 Use Case: Set number of points needed
 Actors: Team Manager
Type: Secondary
Description: The team manager will be responsible for setting the points necessary for

the reward. This will allow for teams to know what they are able to redeem points
for, whether they want to continue saving their points or just choose an event to
redeem for. This allows the manager to keep track of how much the company will
spend if the team(s) continue to save up or redeem their points.

 Use Case: Update user info
 Actors: Employee
Type: Secondary
Description: The user can modify any information provided on the sign-up process, such

as their email address, username, company they work for and contact information,
and they are allowed to re-do their registration survey to change working times and
breaks as needed.

 Use Case: Be given daily task
 Actors: Team Manager
Type: Secondary
Description: The Team Manager is allowed to create or modify custom daily tasks to

give to specific or all employees depending on observations made around the
workplace for how to improve employee's relationship with their job environment
and peers. They are allowed to enter a string of a single sentence for a title, a
paragraph for a description, and the number of points that are achievable by doing
this task.

8.4 Use cases prioritization
In order to decide which usage cases are to be processed first, we need to sort them

according to priority. The characteristics of a specific use case that will make a
use case have a high priority are the following:

61

a. If it represents an important process in the line of business.
b. Whether it includes complex functions.
c. If it has a significant impact.

In order to carry out the classification, each case of use can be assigned
a numerical valuation of each of these points, in order to obtain a total score by
applying weights to each section. According to these criteria, values from 1 to 10
will be assigned to each use case and each criterion will be weighted according
to the following:

Weighting 0,5 0,25 0,25
Sum

Order

Use case a b c

UC1 9 3 9 7.5 3

UC2 7 2 4 5 19

UC3 7 4 8 6.5 6

UC4 8 6 9 7.75 2

UC5 7 3 7 6 10

UC6 8 4 8 7 5

UC7 6 4 7 5.75 11

UC8 9 9 9 9 1

UC9 5 4 6 5 18

UC10 6 4 7 3.75 23

UC11 7 2 6 5.5 16

UC12 5 1 6 4.25 22

UC13 5 1 6 4.25 21

UC14 6 3 5 5 20

UC15 6 5 6 5.75 12

UC16 8 7 7 7.5 4

UC17 7 5 6 6.25 9

UC18 7 5 6 6.25 8

62

UC19 5 5 6 5.25 17

UC20 7 3 6 5.75 13

UC21 6 4 6 5.5 15

UC22 7 2 7 5.75 14

UC23 7 6 6 6.5 7

Based on the prioritizations above, we have come up with 3 main

development cycles centered on:
1. Initial User sign up
2. Updating User info upon interaction with the platform
3. Calculating points/rewards after user-accomplished tasks.

FIRST CYCLE

● Sign Up
● Fill in survey
● Open user profile
● Set reward budget
● Set number of points needed
● Add/remove team members
● Visualize individual score
● Visualize team score
● Be given daily task

SECOND CYCLE

● Update user info
● Break reminder
● Receive notification
● Describe current feelings
● Enter break
● Enter time working
● Do a daily task
● Daily check-in

THIRD CYCLE

● Calculate points
● Submit reward suggestion
● Vote on team reward
● Approve/deny reward suggestion
● Approve/deny team reward
● Redeem points

63

9. Construction

9.1 First Iteration

9.1.1 First iteration analysis

Expanded format use cases description

- Use Case: Sign Up
- Actors: Employees & Managers
- Purpose: To create an account in order to be able to use BonusBreak
- Overview: An employee wants to join the BonusBreak team of their workplace.

The first time they open the app they will get the options to sign in or sign up. As
they don’t have an account yet, they press the sign up button and start the
process of signing up for BonusBreak. They follow the steps that appear on the
screen and upon completing all the steps they will have successfully signed up.

- Type: Primary and essential
- References: Functions: U-C002
- Typical course of events:

Actor System

1. This use case begins when an user
presses the “Sign Up”-button

2. Show input form for information like
name, email, workplace and password

3. Enter the required information 4. Create an account for the user in the
database and redirect the user to the
sign up survey

- Alternative courses:
- Line 4: One or more of the input fields contain invalid values, like for example

too weak password or an email without an “@”-sign. An error message appears
above the fields that are incorrect and the account is not created.

- Use Case: Fill in survey
- Actors: Employee
- Purpose: The user of BonusBreak fills in a survey when signing up, in order to

tailor the experience of the app for each individual.
- Overview: When the user has signed up, they fill in a survey. The survey should

include information about their current workstyle, means of de-stressing,
interests outside of work and any current causes of stress, anxiety and unrest in
the workplace.

64

- Type: Primary and essential
- References: Functions: U-C002
- Typical course of events:

Actor System

1. This use case begins after a user has
signed up for BonusBreak

2. It presents the survey as several
questions

3. Fill in survey and click “Finish” 4. Process the survey to tailor the app

- Alternative courses:
- Line 4: Some of the questions are not answered. The system lets the user know

which questions are not filled out and lets the user fill them out.

- Use Case: Open user profile
- Actors: Employee
- Purpose: The user should be able to view their profile at any time.
- Overview: The user should be able to view their profile whenever they want,

when clicking the icon for “My profile”.
- Type: Secondary
- References: Functions: U-C019
- Typical course of events:

Actor System

1. This use case starts when the user click
on the icon for “my profile”

2. It displays the users profile

- Alternative courses:

- Use Case: Set reward budget
- Actors: Manager
- Purpose: Setting the monetary budget for the designated reward
- Overview: At the start of the iteration, the manager presses the “Set reward

budget”-button and enters how much money that will be available for the
iteration reward. This should correspond to the number of points needed.

- Type: Secondary
- References: Functions: G-R008
- Typical course of events:

Actor System

1. This use case starts when the manager 2. Show slider with numerical values

65

uses their admin account to access the
“Set reward budget”-panel

3. Slide the slider to the desired reward
budget

4. Update database with reward budget

- Alternative courses:

- Use Case: Set the number of points needed
- Actors: Manager
- Purpose: Setting the goal for the iteration that is used to determine whether the

team receives the iteration reward
- Overview: At the start of an iteration, the manager of a team presses the “Set

iteration goal”-button and enters the number of points required for the
iteration. The goal will be visible to the entire team so that they know how many
points are required to receive the iteration reward

- Type: Secondary
- References: Functions: G-R014
- Typical course of events:

Actor System

1. This use case starts when the manager
uses their admin account to access the
“Set iteration goal”-panel

2. Show slider with numerical values

3. Slide the slider to the desired iteration
goal

4. Update database with iteration goal

- Alternative courses:

- Use Case: Add/remove team members
- Actors: Manager
- Purpose: The manager should be able to add and remove members of the team,

in order to be consistent with the real life workplace teams.
- Overview: The manager would want to add an employee to their team when

there is a new hire, or someone has transferred teams within the company.
Similarly, they would want to remove members from their team whenever an
employee has left the real life workplace team.

- Type: Primary
- References: Functions: G-C013
- Typical course of events:

Actor System

66

1. This use case starts when the manager
uses their admin account to access the
“Modify team”-panel

2. Shows the current members of the
team, and a search bar for finding
employees

3. The manager either searches for an
employee and presses the “+”-icon to
add them to their team, or presses the
“x”-icon next to an existing member to
remove them

4. Adds/removes member from the
team, and updates the view with current
team members

- Alternative courses:
- Line 4: If the employee does not have an BonusBreak account, the manager will

not find them in the system and will not be able to add them to their team

- Use Case: Visualize individual score
- Actors: Employee
- Purpose: The employee should be able to access the points they have

accumulated individually by taking breaks, completing daily tasks, their time
spent working, and by checking-in to the app.

- Overview: The user should be able to access their individual score at all times,
when clicking the icon for “Individual score”.

- Type: Primary and actual
- References: Functions: U-C007 and G-R012
- Typical course of events:

Actor System

1. This use case starts when the user
clicks on the icon for “Individual score”

2. It displays different statistics regarding
individual score

- Alternative courses:

- Use Case: Visualize team score
- Actors: Employee
- Purpose: The employee should be able to access the points they have

accumulated as a group, where each team member’s individual score is added
up for a total team score, which can be used to redeem a team reward.

- Overview: The user should be able to access the team score at all times, when
clicking the icon for “Team score”.

- Type: Primary and actual
- References: Functions: U-C006
- Typical course of events:

67

Actor System

1. This use case starts when the user
clicks on the icon for “Team score”

2. It displays different statistics regarding
the team score

- Alternative courses:

- Use Case: Be given daily task
- Actors: Manager
- Purpose: The Team Manager should be able to create or modify custom daily

tasks to give to specific or all employees.
- Overview: The manager should be able to create or modify custom daily tasks

by clicking on the “Add daily task”- or “Modify daily task”-button. The task should
contain a string of a single sentence for a title, a paragraph for a description, and
the number of points that are achievable by doing this task.

- Type: Secondary
- References: Functions: U-C003
- Typical course of events:

Actor System

1. This use case starts when the manager
uses their admin account to access the
“Add daily task”- or “Modify daily task”-
button.

2. It displays the input fields: title,
description, achievable points

3. The manager fills out all the input
fields and clicks “Finish”

3. It adds the task to the database

- Alternative courses:
- Line 4: Some of the input fields are not answered. The system lets the user know

which input fields are not filled out and lets the user fill them out.

Operation contracts

Action: 1. This use case begins when an user presses the “Sign Up”-button

Name responsibilities cross
references

notes exceptions output preconditions postconditions

signUp Starts a
session with
the system so

Function:
U-C002

 No active
sessions

A page has
shown up with
the sign up

68

to show an
sign up form

Use Case:
sign up

form

Action: 3. Enter the required information

Name responsibilities cross
references

notes exceptions output preconditions postconditions

enterInfo
(name: name,
email: email,
workplace:
workplace,
password:
password)

Entering the
information
necessary to
create a
profile

Function:
U-C002

Use Case:
sign up

 If values
are invalid
in fields,
indicate
that there
has been
an error

New user
is created
and
stored in
a
database

No active
sessions

A new user has
been created
and the user
has been
redirected to a
personal
survey

Action: 1. This use case begins after a user has signed up for BonusBreak

Name responsibilities cross
references

notes exceptions output preconditions postconditions

presentSurvey Presents the
user a survey
in series of
questions
about their
day to day

Function:
U-C002

Use Case:
Fill in
survey

 User has to be
signed in

a page has
shown up with
the survey
questions

Action: 3. Fill in survey and click “Finish”

Name responsibilities cross
references

notes exceptions output preconditions postconditions

fillSurvey
(answers:
answers)

Answer the
questions
presented and
submit them

Function:
U-C002

Use Case:
Fill in
survey

 If some
questions
are not
answered,
lets the
user know
which
questions
need to be

Answers
stored in
database
and sent
to tailor

Questions
have to be
filled

Personal
information is
updated

69

filled

Action: 1. This use case starts when the user click on the icon for “my profile”

Name responsibilities cross
references

notes exceptions output preconditions postconditions

showProfile User clicks the
icon for “my
profile”

Function:
U-C019

Use Case:
Open user
profile

 User has to be
signed in

The user’s
profile is
displayed

Action: 1. This use case starts when the manager uses their admin account to access
the “Set reward budget”-panel

Name responsibilities cross
references

notes exceptions output preconditions postconditions

accessReward
Budget

Manager
accesses
the“Set
reward
budget”-panel

Function:
G-R008

Use Case:
Set reward
budget

 Manager has
to be signed in
to admin
account

A slider with
numerical
values is
shown

Action: 3. Slide the slider to the desired reward budget

Name responsibilities cross
references

notes exceptions output preconditions postconditions

slideBudgetSli
der (budget:
budget)

Manager slides
the slider to
set the budget

Function:
G-R008

Use Case:
Set reward
budget

 Database
is
updated
with new
reward
budget

Manager has
to be signed in
to admin
account

Reward budget
is updated

Action: 1. This use case starts when the manager uses their admin account to access the
“Set iteration goal”-panel

Name responsibilities cross notes exceptions output preconditions postconditions

70

references

accessIteratio
nGoal

Manager
accesses
the“Set
iteration
goat”-panel

Function:
G-R014

Use Case:
Set the
number of
points
needed

 Manager has
to be signed in
to admin
account

A slider with
numerical
values is
shown

Action: 3. Slide the slider to the desired iteration goal

Name responsibilities cross
references

notes exceptions output preconditions postconditions

slidePointSlide
r (points:
points)

Manager slides
the slider to
set the points
necessary for
the goal

Function:
G-R008

Use Case:
Set the
number of
points
needed

 Database
is
updated
with new
iteration
goal

Manager has
to be signed in
to admin
account

Iteration goal
points are
updated

Action: 1. This use case starts when the manager uses their admin account to access the
“Modify team”-panel

Name responsibilities cross
references

notes exceptions output preconditions postconditions

accessTeamM
embers

Manager
accesses
the“Modify
team”-panel

Function:
G-C013

Use Case:
Add/remov
e team
members

 Manager has
to be signed in
to admin
account

Shows a list of
current
members and
a search bar
for finding
them

Action: 3. The manager either searches for an employee and presses the “+”-icon to add
them to their team, or presses the “x”-icon next to an existing member to remove them

Name responsibilities cross
references

notes exceptions output preconditions postconditions

71

AddRemoveM
ember
(member:
member,
addOrRem:
addOrRem)

Manager
searches for
team
members and
presses “+” or
“x” icons to
add/remove

Function:
G-C013

Use Case:
Add/remov
e team
members

 If the
team
member
does not
have a
Bonus
Break
account
the
manager
will not be
able to
find them
to add or
delete

Database
is
updated
with new
or
deleted
member

Manager has
to be signed in
to admin
account

Shows the
updated team
view with new
or deleted
team member

Action: 1. This use case starts when the user clicks on the icon for “Team score”

Name responsibilities cross
references

notes exceptions output preconditions postconditions

accessTeamSc
ore

User clicks on
the icon for
“Team score”

Function:
U-C006

Use Case:
Visualize
team score

 User has to be
signed in

Shows a page
with different
statistics
regarding the
user’s team
score

Action: 1. This use case starts when the manager uses their admin account to access the
“Add daily task”- or “Modify daily task”-button.

Name responsibilities cross
references

notes exceptions output preconditions postconditions

accessDailyTas
k

Manager clicks
“Add daily
task”- or
“Modify daily
task”-button.

Function:
U-C003

Use Case:
Be given
daily task

 Manager has
to be signed in
to admin
account

Displays input
fields for
modifying or
creating a
Daily task

Action: 3. The manager fills out all the input fields and clicks “Finish”

Name responsibilities cross
references

notes exceptions output preconditions postconditions

72

fillDailyTask
(title: title,
description:
description,
point: points)

Manager fills
input field and
clicks finish

Function:
U-C003

Use Case:
Be given
daily task

 If some
fields are
not
answered,
display
error
message

Database
is
updated
with new
Daily task

Manager has
to be signed in
to admin
account

Daily tasks are
updated

9.1.2 First iteration Design

Sequence diagrams

link to class diagram and first iteration sequence diagram on LUCID CHART

https://lucid.app/lucidchart/72b96c9d-03ff-4df9-a026-1ce819e4650c/edit?invitationId=inv_6d66269b-a618-4cae-8a97-0575bdb5d78d

73

74

Class Diagram

Transition State Diagram

The Transition State diagram for the first iteration is the following one
(if the size does not allow it to be visualized clearly, it can be seen here):

https://drive.google.com/file/d/1iJmG7aP_lXC2Ua-aTNZOT02vcRM_OcEv/view?usp=sharing

75

9.2 Second Iteration

9.2.1 Second iteration analysis

Expanded format use cases description

- Use Case: Update user info
- Actors: Employee
- Purpose: The user should be able to update their user information
- Overview: The user should be able to modify any information provided on the

sign-up process, such as their email address, username, company they work for
and contact information, and they are allowed to re-do their registration survey
to change working times and breaks as needed.

- Type: Secondary
- References: Functions: U-C015
- Typical course of events:

Actor System

1. This use case starts when the user
clicks on the “Update user info”-button

2. It displays the different fields you can
modify with the old information

3. The user modifies the preferred fields
and clicks on the “Finish”-button

4. It updates the user information in the
database

- Alternative courses:
- Line 4: Some of the input fields are not answered. The system lets the user know

which input fields are not filled out and lets the user fill them out.

76

- Line 4: One or more of the input fields contain invalid values, like for example
too weak password or an email without an “@”-sign. An error message appears
above the fields that are incorrect and the account is not created.

- Use Case: Break reminder
- Actors: Employee
- Purpose: The employees should be urged to take breaks regularly in order to

prevent burn out syndrome.
- Overview: During the workday the employee will receive a reminder through the

app to take a break from work. The interval between the breaks will be decided
by an algorithm that takes several factors into account.

- Type: Primary, Essential
- References: Functions: G-C004
- Typical course of events:

Actor System

1. This use case gets triggered several
times a day for an employee

2. Sends a message to an employee that
says that it is time to take a break

3. Either accepts or declines the proposal
of taking a break

4. The response from the employee is
taken into account when deciding when
to send the next break reminder

- Alternative courses:

- Use Case: Receive Notification
- Actors: Employee
- Purpose: In order for employees to be kept informed in real time, BonusBreak

continuously sends notifications to employees about different tasks they should
be doing throughout the day.

- Overview: Throughout the workday, BonusBreak presents different
opportunities to gather points to reach a reward through sending these
notifications to employees. Employees will receive push notifications reminding
them of things such as taking a break or describing how they’re feeling at work.

- Type: Primary, actual
- References: Functions: G-C004 and U-C005
- Typical course of events:

Actor System

1. This use case begins after there are
employees present

2. It presents notifications to each
employee within the system

3. Check notifications and see if they
have yet to complete any of the forms

4. Continue to push notifications if the
employee has not completed tasks

77

- Alternative courses:

- Use Case: Describe current feelings
- Actors: Employee
- Purpose: For the employee to be reminded to describe their feelings.
- Overview: In order to track how employees are feeling as they are working,

BonusBreak will send employees notifications in order for them to write down
their feelings about the given day/situation. This will be one of the other
notifications employees will receive throughout the workday.

- Type: Primary
- References: Functions: U-C016
- Typical course of events:

Actor System

1. This use case starts when the user is
registered in the system

2. It gives notification to each user in the
system

3. The user receives notification and
clicks on it

4. It displays a form for the user to fill out

5. The user fills out the form with their
current feelings and clicks on the
“Finish”-button

6. It store the information in a database

- Alternative courses:

- Use Case: Enter break
- Actors: Employee
- Purpose: The employee should be rewarded for taking regular breaks, and

therefore needs to be able to tell the system when they have taken a break.
- Overview: After an employee has taken a break, they press the button for

reporting a break in the app. They also input how long the break was. After
reporting a break, the system will reward the employee with points, based on
the length of the break and the amount of time since the last break.

- Type: Primary, Actual
- References: Functions: U-C001
- Typical course of events:

Actor System

1. This use case starts when an employee
presses the “Enter break”-button

2. Displays a slider for describing how
long the break was and a “Confirm”-
button

78

3. Slides the slider to the correct amount
of minutes and presses the “Confirm”-
button

4. Calculates an appropriate amount of
points for the employee based on several
factors and adds the points to the
employee’s total

- Alternative courses:

- Use Case: Enter time working
- Actors: Employee
- Purpose: In addition to the amount of breaks, the amount of work an employee

has worked contributes to the calculation of points. An appropriate balance
between work and breaks leads to more points for the employee.

- Overview: At the end of a workday, the employee enters into the system how
much time they have spent working that day. This leads to a calculation of points
for the employee.

- Type: Primary, Actual
- References: Functions: U-C001
- Typical course of events:

Actor System

1. This use case starts when an employee
presses the “Enter working time”-button

2. Displays a slider for working time and
a “Confirm”-button

3. Adjusts the slider to the correct
amount of working time and presses the
“Confirm”-button

4. Adds the information to the database,
in addition to calculating the right
amount of points and adding the points
to the employee’s total.

- Alternative courses:

- Use Case: Do a daily task
- Actors: Employee
- Purpose: For the user to be able to perform daily tasks for bonus points.
- Overview: Every day, an employee will have optional tasks that are meant to

improve their social and personal relationship with work. Tasks could be things
such as complimenting a coworker, inviting a coworker to lunch, or even revising
your schedule for the week and taking 10 minutes to organize yourself. These
tasks are purely optional but reporting to BonusBreak that you participated in
these will reward you bonus points.

- Type: Secondary
- References: Functions: U-C017
- Typical course of events:

79

Actor System

1. This use case starts after the user
clicks on the “Do daily task”-button

2. It displays the daily task

3. The user does the daily task and
confirms to the system that it’s done

4. It calculates the amount of points the
employee should receive and adds it to
the employee’s total

- Alternative courses:
- Line 4: The user never does the daily task. Then the task gets removed and a new

one will be given the next day.

- Use Case: Daily check-in
- Actors: Employee
- Purpose: For the employee to check in to the app daily
- Overview: The employee will be able to check in on BonusBreak everyday in

order to gain more points. This will be similar to describing their daily feelings,
doing a daily task, or entering break/time working. This allows the system to
reward the employee for checking in.

- Type: Primary and actual
- References: Functions: U-C009
- Typical course of events:

Actor System

1. This use case starts when the first time
the user is accessing the app

2. It adds the appropriate amount of
points to the employee’s total

- Alternative courses:

Operation contracts

Action: 1. This use case starts when the user clicks on the “Update user info”-button

Name responsibilities cross
references

notes exceptions output preconditions postconditions

presentUserFi
elds

Presents the
user the user
information
fields

Function:
U-C015

Use Case:
Update
user info

 User has to
have a profile
in the system
and signed in

A page has
shown up with
the user
information
fields

80

Action: 3. The user modifies the preferred fields and clicks on the “Finish”-button

Name responsibilities cross
references

notes exceptions output preconditions postconditions

UpdateUserI
nfo(name:
name, email:
email,
workplace:
workplace,
password:
password)

Update user
information if
the user needs
to change it

Function:
U-C015

Use Case:
Update
user info

 If values
are invalid
in fields,
indicate
that there
has been
an error

The
user
has
been
update
d and
it’s
stored
in a
databas
e

You have a
profile in the
system

The user
information is
updated and
the user gets a
notification on
the screen
indicating that
the update has
been
successful

Action: 1. This use case gets triggered several times a day for an employee

Name responsibilities cross
references

notes exceptions output preconditions postconditions

breakReminde
r

Notification is
sent to user to
take a break

Function:
G-C004

Use Case:
Break
reminder

 User must be
registered
into the
system

A message is
sent to the
employee to
take a break

Action: 3. Either accepts or declines the proposal of taking a break

Name responsibilities cross
references

notes exceptions output preconditions postconditions

breakRespons
e(response:
response)

User accepts
or decline the
break
reminder

Function:
G-C004

Use Case:
Break
reminder

 Response
taken
into
account
when
deciding
when to

User must be
registered
into the
system

A message
goes away and
decides when
to send
another
reminder

81

send the
next one

Action: 1. This use case begins after there are employees present

Name responsibilities cross
references

notes exceptions output preconditions postconditions

sendNotificati
on

Notification is
sent to user
about tasks

Function:
G-C004 &
U-C005

Use Case:
Receive
Notificatio
n

 Users must be
registered
into the
system

A notification
is presented to
the employees
about tasks

Action: 3. Check notifications and see if they have yet to complete any of the form

Name responsibilities cross
references

notes exceptions output preconditions postconditions

checkNotificat
ion

Checks if all
tasks have
been
completed

Function:
G-C004 &
U-C005

Use Case:
Receive
Notificatio
n

 If tasks all
done
update
system to
stop
sending
notificati
ons

Users must be
registered
into the
system

Sends
reminder If
tasks are still
present

Action: 1. This use case starts when the user is registered in the system

Name Responsibilities Cross
references

Notes Exceptions Output Preconditions Postconditions

receiveFeelin
gsNotificasti
on

Sends users
notifications
asking how
they are feeling

Function:
U-C016

Use Case:
Describe
current

 Users must
be registered
into the
system

The
notification is
displayed for
the user

82

feelings

Action: 3. The user receives notification and clicks on it

Name Responsibilities Cross
references

Notes Exceptions Output Preconditions Postconditions

displayFeelin
gsForm

Once user clicks
the notification,
the user is
redirected to
the feelings
form

Function:
U-C016

Use Case:
Describe
current
feelings

 Users must
be registered
into the
system

A form is
displayed for
the user, in
which they
can describe
their current
feelings

Action: 6. The user fills out the form with their current feelings and clicks on the
“Finish”-button

Name Responsibilities Cross
references

Notes Exceptions Output Preconditions Postconditions

fillCurrentFe
elingsForm(f
orm: form)

User fills out
the form with
how they are
feeling and click
finish

Function:
U-C016

Use Case:
Describe
current
feelings

 The
inform
ation
that
the
user
provid
es is
stored
in a
databa
se

You have a
profile in the
system

redirected to a
thank you for
filling out page

Action: 1. This use case starts when an employee presses the “Enter break”-button

Name responsibilities cross
references

notes exceptions output preconditions postconditions

enterBreak Employee
clicks
the“Enter
Break”-button

Function:
U-C001

Use Case:
Enter break

 User has to be
signed in

A slider with
numerical
values and
confirm button
is shown

83

Action: 3. Slides the slider to the correct amount of minutes and presses the “Confirm”-
button

Name responsibilities cross
references

notes exceptions output preconditions postconditions

slideBreakSlid
er (time: time)

employee
slides the
slider to set
the time of
break that was
taken and
confirms

Function:
U-C001

Use Case:
Enter break

 Database
is
updated
with
points
after
break
calculatio
ns are
made

User has to be
signed in

Points are
updated with
however much
the break
augmented it

Action: 1. This use case starts when an employee presses the “Enter working time”-
button

Name responsibilities cross
references

notes exceptions output preconditions postconditions

enterWorkTim
e

Employee
clicks the
“Enter working
time”-button

Function:
U-C001

Use Case:
Enter time
working

 User has to be
signed in

A slider with
numerical
values and
confirm button
is shown

Action: 3. Adjusts the slider to the correct amount of working time and presses the
“Confirm”-button

Name responsibilities cross
references

notes exceptions output preconditions postconditions

slideWorkSlid
er (time: time)

employee
slides the
slider to set
the time of
work that was
done and
confirms

Function:
U-C001

Use Case:
Enter time
working

 Database
is
updated
with
points
after
work
calculatio
ns are

User has to be
signed in

Points are
updated with
however much
the work time
augmented it

84

made

Action: 1. This use case starts after the user clicks on the “Do daily task”-button

Name responsibilities cross
references

notes exceptions output preconditions postconditions

enterDailyTas
k

Employee
clicks the “Do
daily task”-
button

Function:
U-C017

Use Case:
Do a daily
task

If the
previ
ous
daily
task
has
not
been
done,
it will
be
repla
ced

If no daily
task, say
to come
back the
next day

 User has to be
signed in and
manager has
given a daily
task

The daily task
is displayed

Action: 3. The user does the daily task and confirms to the system that it’s done

Name responsibilities cross
references

notes exceptions output preconditions postconditions

completeDaily
Task

employee
confirms the
daily task has
been done

Function:
U-C017

Use Case:
Do a daily
task

 Database
is
updated
with
points
after
Daily task
calculatio
ns are
made

User has to be
signed in and
a daily task
has to be
present

Points are
updated with
however much
the daily task
points
augmented it

Action: 1. This use case starts when the first time the user is accessing the app

Name responsibilities cross
references

notes exceptions output preconditions postconditions

dailyCheckIn User opens
application

Function:
U-C009

 Database
is
updated

User has to
have a profile
in the system

Points are
updated with
however much

85

Use Case:
Daily
check-in

with
points
after
check in
calculatio
ns are
made

and signed in the check in
points
augmented it

9.2.2 Second iteration Design

Sequence diagrams (Lucid Chart Link)

https://lucid.app/lucidchart/8bc863f2-4db7-45d6-b315-12c9898e43e7/edit?invitationId=inv_8ac90db0-717a-491d-b5af-ad457a15eb38

86

Class Diagram

Transition State Diagram

 The state diagram for this second iteration is attached right below,
corresponding to this second iteration only the states and transitions in
blue, as it is an extension of the first iteration (if its size does not let the
reader clearly take a look at it, it can also be found here):

https://drive.google.com/file/d/164mj5pRr-ZrOQZkC-Es2LMynw-VnrDnj/view?usp=sharing

87

10. Execution of the quality plan

After reviewing the quality plan, the offer and budget have all the requirements that are
needed. The offer and budget were planned well. Using our use case model draft, we
were able to determine factors within our offer and budget, which allowed us to validate
and continue with our project. Our SCM plan is completed and has covered everything
that has to be controlled within our project; therefore, our SCM plan review is also well
since it describes the activities that need to be carried out throughout our project,
allowing us to be in control of everything we need to control while also making sure that
we can make any changes if needed. Lastly, our quality plan ensures that everything is
up to par and that if anything that needs to be changed or revised, it can be done so that
our project can be fulfilled correctly.

After reviewing the use case model draft, it fulfills all the requirements. The use case
model then takes the draft and adds onto it. The complete model describes the behavior
of our system while also identifying the use cases that represent all the system’s
functionality, actors within our system, and dependencies present in the system. It also
complies with the modeling language used. The use case model review then verifies if
the use case model is correct, which is it; thus, it fulfills the requirements.

After reviewing the software configuration management plan, it meets the
requirements. It covers the control, management, maintenance of changes that will be

88

carried out throughout the project. It also includes a change and version control
mechanism that allows us to oversee anything related to the quality software. The
software configuration management plan then verifies if the plan is correct, which it is;
therefore, it fulfills the requirements.

After reviewing the feasibility study, it meets the requirements since it is self-
descriptive, since its structure and content are fully described within it. The feasibility
analysis review then verifies the analysis which it properly does, ensuring that we are
able to deduce the feasibility of the project; hence, it fulfills the requirements.

After reviewing the high-level description of the use cases, it contains the name, actors,
description and type of the use cases involved. Each of the use cases involved contains
a description of how it will achieve a certain objective/ feature of the system. It shows
how the use cases are used as steps for the actor to perform an operation. Since it’s high
level, it does not describe the internal system functionality nor how it will be
implemented, since the description will use language that the end user can interpret.
The high-level description review then confirms that all of this is correct, which it does;
thus, it fulfills all the requirements needed.

After reviewing the prioritization of use cases, it properly takes into consideration the
use cases and their importance to rank them in priority order in order to see which will
be processed first. After being weighed on certain criteria, the use cases then get ranked
and put into cycles of how the use cases will be processed. After this, the prioritization
of uses cases review, then reviews this prioritization to see if it is correct, which it does;
hence, it fulfills all the requirements needed.

After reviewing the estimation, the method properly estimates the effort for the
development of the software project based upon the points of the use cases. It takes
into consideration the account of the use cases included in the estimate. It classifies
each iteration between actor and the complexity, allowing an assignment of weight to
it, calculates the complexity of the use cases according to the transactions in the
respective use case, calculates the unadjusted use case points, the technical and
environmental complexity factors and lastly also calculates the adjusted use case points.
Then the estimation review obtains the use case points for every iteration and verifies
if the corresponding effort required to accomplish them has been properly calculated
for each respective use case. This is done properly; thus, it completes and fulfills all the
requirements needed.

After reviewing the schedule, it properly takes into consideration the prioritization of
uses cases that has been developed for the iterations that will complete the
development of the software, the estimation of each iteration based on of the use cases,
it is able to be properly updated and adapted as the project progresses, includes how
many people will be participating in the project team and the technical skills needed,
defines how the team will work on the software development and how it will be
organized, follows the methodology properly, and includes a Gantt chart which properly
represents all the activities that will be carried out throughout the project development
period—the char connects activities based on their relationships and defines the

89

estimated resources and time for these given activities, reflects tasks and key dates, as
well as the milestones and dependencies between tasks. The schedule review then
properly checks all of these components of the schedule to ensure that it is all being
carried out properly, which it is; therefore, these fulfill all the requirements.

After reviewing the use cases in extended format, it properly expands each high-level
use case for each iteration. Each of these expanded use cases contains two sections: one
is the header that includes the names, actors, the description and type of use cases, and
the second is the body that describes the events associated with each use case. The
body properly has two columns describing the actor and the system response to each.
The use cases in extended format then ensures that all of these requirements have been
properly met in order to ensure correctness.

After reviewing the conceptual model, the model represents the aspects of the problem
in a way that describes the main characteristics of the system involved. This analysis will
be carried out in each iteration of the project that will validate it. This model does not
include any form of implementation decisions, since it is independent from the
implementation itself. This conceptual model also follows UML modeling language and
properly has enough level of detail, but not too much, in order to represent the problem
at hand. This conceptual model has been made from a class diagram; thus, the entities
and relationships present have been properly identified for each iteration. The
conceptual model review then ensures that all quality metrics (such as the semantic
quality, completeness, language quality, and syntactic quality) have all been properly
met in order to ensure a model that is easy to understand while simultaneously
providing all the information needed.

After reviewing the operation contracts, we properly have, for each use case, a contract
of operation for every individual actor. Our operation contracts review ensures that
every contract consists of all these fields: name, responsibilities, cross references, notes,
exceptions, output, preconditions, and post conditions in order to deliver a proper
contract. The review also ensures that the cross-references correspond to the
requirements we defined in the project that are resolved with the use cases of which
each operation contract pertains to.

After reviewing the class diagram, we have a class diagram for each iteration with UML
and our design is independent of the implementation involved. We properly measure
the comprehensibility of the model in order to make sure that it is easily understood,
the analyzability of the model to allow for errors/deficiencies to be easily identified, and
making sure that the modifiability is flexible in order to make any changes necessary to
the diagram when necessary. In order to measure the structural complexity of our class
diagrams, we use the following metrics: (total) number of classes, (total) number of
attributes, (total) number of methods, (total) number of partnerships, (total) number of
aggregation ratios, (total) number of dependency relations, (total) number of
generalization ratios, (total) number of generalization hierarchies, (total) number of
aggregations ratios, class weighted methods depending on the respective complexity,
and the maximum ITL and maximum HAgg. Our class diagram review then properly
ensures that all of these metrics are correct since all of these are related to the

90

maintenance time, comprehensibility, analysability, and modifiability of the designed
class diagram. It assesses whether the design meets all of these required quality levels
in order to make sure we know the effectiveness of the process that our model
represents.

After reviewing the sequence diagrams, we have designed one for each use case that
defines both the typical and atypical courses of the events defined in the respective
case. Our diagram shows the interactions represented between the class instances and
the actors involved. The diagram also shows instances and events that describe these
interactions between class instances. It also includes the flowing of time within the
diagram and shows the control flow of one participant to another. Our sequence
diagram review then ensures that proper UML notation is followed within our diagrams.
It also ensures that these following elements are present: name of the sequence
diagram, lifelines for actors and class instances, messages between instances that define
the method, and loops that indicate the number of times the loop is executed.

After reviewing the transition state diagram, it properly describes the behavior of the
system with each diagram representing the behavior of each object throughout the
project. The diagram contains states and transitions, and the transitions include the
corresponding events/actions. Our state diagram review then ensures that it shows all
possible states an object can go throughout the project due to possible interactions
throughout the application. Lastly, it ensures that there's an initial and final state and
that all states that are represented in the diagram are accessible.

11. Execution of the configuration management plan

All of this is done in section 4.10

